Hierarchical regulation of photosynthesis gene expression by the oxygen-responsive PrrBA and AppA-PpsR systems of Rhodobacter sphaeroides.
نویسندگان
چکیده
In the facultatively phototrophic proteobacterium Rhodobacter sphaeroides, formation of the photosynthetic apparatus is oxygen dependent. When oxygen tension decreases, the response regulator PrrA of the global two-component PrrBA system is believed to directly activate transcription of the puf, puh, and puc operons, encoding structural proteins of the photosynthetic complexes, and to indirectly upregulate the photopigment biosynthesis genes bch and crt. Decreased oxygen also results in inactivation of the photosynthesis-specific repressor PpsR, bringing about derepression of the puc, bch, and crt operons. We uncovered a hierarchical relationship between these two regulatory systems, earlier thought to function independently. We also more accurately assessed the spectrum of gene targets of the PrrBA system. First, expression of the appA gene, encoding the PpsR antirepressor, is PrrA dependent, which establishes one level of hierarchical dominance of the PrrBA system over AppA-PpsR. Second, restoration of the appA transcript to the wild-type level is insufficient for rescuing phototrophic growth impairment of the prrA mutant, whereas inactivation of ppsR is sufficient. This suggests that in addition to controlling appA transcription, PrrA affects the activity of the AppA-PpsR system via an as yet unidentified mechanism(s). Third, PrrA directly activates several bch and crt genes, traditionally considered to be the PpsR targets. Therefore, in R. sphaeroides, the global PrrBA system regulates photosynthesis gene expression (i) by rigorous control over the photosynthesis-specific AppA-PpsR regulatory system and (ii) by extensive direct transcription activation of genes encoding structural proteins of photosynthetic complexes as well as genes encoding photopigment biosynthesis enzymes.
منابع مشابه
Interaction of two photoreceptors in the regulation of bacterial photosynthesis genes
The expression of photosynthesis genes in the facultatively photosynthetic bacterium Rhodobacter sphaeroides is controlled by the oxygen tension and by light quantity. Two photoreceptor proteins, AppA and CryB, have been identified in the past, which are involved in this regulation. AppA senses light by its N-terminal BLUF domain, its C-terminal part binds heme and is redox-responsive. Through ...
متن کاملMolecular genetic analysis suggesting interactions between AppA and PpsR in regulation of photosynthesis gene expression in Rhodobacter sphaeroides 2.4.1.
The AppA protein plays an essential regulatory role in development of the photosynthetic apparatus in the anoxygenic phototrophic bacterium Rhodobacter sphaeroides 2.4.1 (M. Gomelsky and S. Kaplan, J. Bacteriol. 177:4609-4618, 1995). To gain additional insight into both the role and site of action of AppA in the regulatory network governing photosynthesis gene expression, we investigated the re...
متن کاملAppA Is a Blue Light Photoreceptor that Antirepresses Photosynthesis Gene Expression in Rhodobacter sphaeroides
Photosynthetic bacteria regulate photosystem synthesis in response to alterations in oxygen tension and light intensity. In this study we show that the PpsR repressor from Rhodobacter sphaeroides binds to DNA in a redox-dependent manner through the formation/breakage of an intramolecular disulfide bond. We also demonstrate that PpsR is antagonized by the flavin-containing antirepressor, AppA, t...
متن کاملTranscriptome analysis of the Rhodobacter sphaeroides PpsR regulon: PpsR as a master regulator of photosystem development.
PpsR from the anoxygenic phototrophic bacterium Rhodobacter sphaeroides has been known as an oxygen- and light-dependent repressor of bacteriochlorophyll and carotenoid biosynthesis genes and puc operons involved in photosystem development. However, the putative PpsR-binding sites, TGTN12ACA, are also located upstream of numerous nonphotosystem genes, thus raising the possibility that the role ...
متن کاملModeling the light- and redox-dependent interaction of PpsR/AppA in Rhodobacter sphaeroides.
Facultative photosynthetic bacteria switch their energy generation mechanism from respiration to photosynthesis depending on oxygen tension and light. Part of this transition is mediated by the aerobic transcriptional repressor PpsR. In Rhodobacter sphaeroides, the repressive action of PpsR is antagonized by the redox- and blue-light-sensitive flavoprotein AppA which results in a unique phenoty...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of bacteriology
دوره 190 24 شماره
صفحات -
تاریخ انتشار 2008